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Conductors in Electric Fields

There is no electric field inside a conductor.
The field on the surface is perpendicular to
the surface and proportional to the surface
charge density.

All charges reside on the surface.

Electric potential is constant throughout the
conductor.



Capacitors
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DC Currents and Resistive Circuits
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Magnetic Force
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Cyclotron Motion
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Sources of Magnetic Field
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Magnetic Flux and Induction
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Maxwell’s Equations
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EM Waves
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EM Energy, Momentum and Pressure
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Reflection and Refraction
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Images by Mirrors
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Images by Refraction and Lenses
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Interference

The intensity observed at any pointis proportional to
the time average of the sum of the fields incident on
that point.

If the fields are coherent and monochromatic they can
interfere with each other, creating bright and dark
areas (fringes).

Destructive or constructive interference depends on
the relative phase of the waves with each other.
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Causes for Phase Difference

Path length difference Reflection
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The Geometries

)
[/0
>
=
=
~
~
- ~
-
-
n <
) -
-
>
. < <
S, e
Y ~ o
_/\\ P =
NG
> \e
d Q Z -
\ 0]
Y _ _—//
S 0
< L
o Viewing screen
Movable
l]]ll'll ‘\I:,
dy
N
2 P p— 1 dy
s -
M,

180° phase
change

)
Air
A

Film

B

Air

©2004 Thomson - Brooks/Cole

No phase
change

-— ~ —>



Rays going through obstacles or openings
can diffract around the edges.

The amount of diffraction depends on the
ratio of the wavelength of the wave to the
size of the opening/obstacle.

The diffracted beam interferes with itself to
create a pattern of bright and dark fringes on
a far away screen.



Narrow Slit Diffraction
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Diffraction Gratings

A device for spectrally analyzing light sources
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Polarization of Light Waves

Polarization of a wave is the direction of its electric
field vector.

Ordinary light is unpolarized.

A polarizer passes light only with polarization along
Its transmission axis.

If light is incident on a surface at Brewster’s angle, the
reflection is also polarized.
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